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IX. On the Comparison of Hyperbolic Arcs. By CHARLES W. MERRIFIELD.
Communicated by the Rev. Dr. Booru, F.R.S.

Received March 3,—Read March 31, 1859.

AN application of JacoBr’s second theorem—the imaginary transformation—has led me
to a formula which reduces the comparison of the arcs of hyperbolas to the same
facility as that of elliptic arcs. The transformation is so easy and obvious, that I have
had some hesitation in publishing it; but I observe that my result was not noticed by
LEGENDRE, or by Professor MosELEY, or in any more recent work which T have seen.
Some of its applications, too, are worthy of remark.
I shall use the ordinary notations:—
A(, 9)=(1—sin*dsin’0)t, F(4, 0)=(~2_, E(0, 0)=[A(4, ¢)de.

INODK
The functional equation

Fo,+Fp,—Fo,=0 . . . . . . . . . (A)

is satisfied, as is well known, by either of the three trigonometrical equations—
COS Py ==COS @, COS P, —sin @, sin , /(1 —sin’d.sin’¢,) . . . . (L)
COS @,==CO8 @, oS P5—+sin @, sin @, 4/ (1 —sin?d.sin’p,) . . . . (2.)
COS @, =CO0S P, C0S P5-+sin @,sin @, +/(1—sin?d.sin’*@,). . . . . (3.)

Dividing each of these by cos ¢,.cos ¢,.cos ¢,, and transposing, they become

sec ;=sec ¢, sec P,~+tan ¢, tan ¢, /(1 4cos*d.tan’p;) . . . . (4)
sec p,=sec @, sec p;—tan ¢, tan @, v/(14cos’d.tan’g,) . . . . (3.)
sec @, =sec @,sec p,— tan @,tan @, 4/(1 +cos?d.tan?p,). . . . . (6.)

It will be noticed, that we might pass from one set to the other, directly, by substi-

tuting sec ¢ for cos @, A/ —ltan ¢ for sin ¢, and cos ¢ for sind. These substitutions con-
stitute JAcoBI'S second theorem. They convert

de . vV =1.dp

(1—sin?0. sin? ¢)% mto (1—sin%6. sin? g)¥

and
(1—sin®d.sin?@)tde into %@ (1—sin*d.sin’® @)%

Now, calling j'(l—- sin*4,sin’p)¢do, Eg, we know that

E¢,+E¢2—E¢3=sin20s1n<p,.sin<p2.sincp3.. o (T)
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If, therefore, we make the above substitutions in this equation, and divide by o/ —1',

we have, making Hp= cj:; <p( 1—sin®d.sin?p)3,

Ho,+Hep,—Hp,=—cos’d.tan ¢,.tan ¢,.tang,. . . . . . (8)

Moreover, since we also have

¥o,+F¥o,—Fp,=0,
it is evident that these equations remain true, if we put for
Eo, Fo+k.Fo,

or for He, Ho+£.Fo,

k being any constant whatever.
If we make lc= —sin®¢, Up=Hgp—sin*d.Fp represents the arc of a hyperbola.

2
In fact, if = smg i coysg 9_1 be the equation to a hyperbola, and we make the ordinate
y=cos*d.tan ¢, we have the abscissa #= —(Ejév(l—sm dsin’p). From these we may

obtain by differentiation,

o (Tcos? dp
yV(dx +d ) cos?p V(l—sinﬁo.sin%)

1 —sin?§ sin%p d sin®§. dg
= ) cos®p4/ (1 —sin?0. smgq.s) —\va —sin%.sin%¢)’

or U¢=H¢—-sin“’0.F¢>.
1f we make sin r=sin 4.sin ¢, 7 is the angle which the normal of the hyperbola makes

with the axis of . If we change the variable from gb to =, we have
U =sin® 0 cos® 4. j‘

3’
sin®f— st )

an equation which bears a remarkable analogy to the arc of the ellipse referred to its

tangent,
d:
EI—E=cos’0.y - 4 —
_ (1—sin?§.sin? 7)= -

It may be worth while to remark, that 4, the angle of the modulus, represents, in the
ellipse, the eccentricity, while in the hyperbola it represents the angle between the
asymptote and the ordinate.

For the comparison of hyperbolic arcs, therefore, we have the equation

Up,+Up,—Upy=—cos*d.tan ¢,.tan @,.tang,, . . . . . . . (9.
answering to the equation for elliptic arcs,
Ep,+Ep,—Ep,=sin*.sin¢,.sing,.sing,. . . . . . . . . . (7)

Formula (8.) may be derived from the equations (4.), (5.), (6.) in exactly the same way
that formula (7.) is derived from the equations (1.), (2.), (8.)*.

* For the details, see LzerNDrE, ‘ Fonctions Elliptiques,” vol. i. p. 48, or MosELEY “ On Definite Inte-
grals,” Encyclopaedia Metropolitana, ¢ Pure Mathematics,” vol. ii. p. 497.
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In particular, if ¢,=3%#, we have, for the complementary functions, Up,+Ug,=oo, as
it ought to be, since the whole length of the curve is infinite.
For duplication, making ¢,=¢,=w, we have
Up,—2Uw=(cos 4.tan »)* tan @,.
The same formula serves for bisection, if we obtain » from ¢, by the help of the
elliptic equations.
Equation (8.) is easily Venﬁed at the extremes, making =0,

de
P= Ycos? ¢

=tan ¢,
and we have the known theorem

tan ¢+tan B —tan (¢4 3)= —tan «.tan 3.tan («-+0).
o

cos ¢’

de, de, dps __
ycos¢l+jcos%— =0 - - o (10)

which is also a particular case of F¢,4Fp,—Fp,=0, depending on the particular equa-
tion

If we make
9—~ Ap=cos ¢, and Hp=

whence

sec ;=sec @, sec P,~+-tan @, tang,, . . . . . . (11.)

which 1 should call the MERIDIONAL EQUATION, from its connexion with the common
formula for meridional parts, and with certain curves on MERcATOR’S Chart, which I have
discussed elsewhere.

I have taken the trouble of deducing (8.) from (4.), (5.), (6. ) directly, but the process
is so exactly parallel to Mr. MoseLEY'S work, at vol. ii. p. 497 of the work above cited,
that it would be unnecessary to insert it here.

A simpler verification may be found as follows: differentiating with regard to ¢ the
expression tan ¢. A¢>, we have

sin®f sin®p

dp (tan ¢.Ap)= _cosg Ap cosQ +Ap—

whence, by integration (no constant needed, since each term vamshes with ¢),
tanp. Ap=Ho+Ep—Fo. . . . . . . . . (12)
If we now add the equations (7 ) and (8.) and subtract the equation
Fo,+Fo,—Fo,=0,
we should have, substituting (12.),
tan ¢,. Ap,+tan ¢,. Ag,—tan @,. Ap,=:sin? 4.sin ¢,.sin @,.sin @, —cos®4.tan ¢,.tan ¢,.tan @,. (13.)
This )equation may be easily verified by using the values of Ag,, Ag,, and Ag, obtained

directly from the equations (1.), (2.), (3.), and clearing by means of the quadratic to
which they all lead,

142 cos ¢, .cos @,. cos P,==cos? , 4+ cos? P, cos® p,+sin? d.sin? @, .sin’p, .sin* ¢, . . (14.)
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Equation (8.)leads to a formula for the direct reduction of the logarithmic integral of
the third kind, whose parameter is negative and greater than unity. It is the exact
analogue of LEGENDRE’s formula for the reduction of the same integral where the para-
meter is negative and less than unity, pp. 153, 1564 of his third volume on Elliptic
Functions. The reduction is of some importance, because on it depends the possibility"
of tabulating those functions, which would otherwise require a table of #reble entry, too
cumbrous to attempt.

Let @, and &, be two amplitudes, such that for the common modulus 4, we have

Fo,=Fo+Fao . 1(@)
Fu,=Fo+Fe . J
‘We must have simultaneously
Ho,4+He—Hp = —cos’dtana tan p tanw, . . . ] )
H¢p +Ho—Hw,= —cos? d tan o tan ¢ tan w, . SV
and also, putting for shortness dp for +/ (14 cos?dtan® o),
S
tan %_tan ¢ cos adz + tan a cos pda J (©)-
1+ cos? @ tan® « tan® ¢

Let us next consider the function

d.
Q=Vau,—Vo,= |22 Ha,— |22
2

le
If we regard « as constant, we obtain from equations (a.),
dwQ de _ dw,

—Eé_ A"“l
whence

d.
=2 (Ho,~Ha).
Now formulee (4.) and (¢.) give

Hw,—Heo,=2He+ cos® d tan « tan ¢ (tan w,+ tan «, ),

and .
2 tan ¢ cos aAa
tan v+ tan w, = 1—cos*¢ iptan2 a.tan®¢’
whence
1 ® c0s?§ sin « tan? gda
2= <p{ wt o cos? § tan®« tan¢ [’
and, after a few reductions, we find
10)— (Hg— Gtana) cos 6tana 1 dp .
2 < “ Aa Fo+ Aa —(1+ cos*§tan®«) sin®?¢ Ag

or, transposing,

JI—(1+ cos?itan®a) sin®¢ Ag " cos?ftana

No constant is needed, since V¢ is an even function of ¢.

{3(Vw,—Va,)—Hea.¥o}.
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One lesson we may learn from this process is, that the proper expression for the
negative parameter greater than unity is — (14 cos®dtan’«). In geometrical researches
this remark will probably lead to simplicity. LEGENDRE has deliberately avoided the
discussion of this form of the parameter*. His reason was, that the complete integral
presents itself in the form of co—co.

The tabulation of the function Vo would only require a table of double entry.

It may be as well to notice that the equations (a.), (.), (¢.) are solved by auxiliary arcs
as folows:

Assume
tan z7,= tan Aew, tanz,= tan cAp,
then

@y =7y=1, y W=7,

It is needless to remark that JacoBI's transformation does not enable us to reduce
the integral of the circular form. The difficulty which we here encounter, is exactly
analogous to that which presents itself in the reduction of the cubic equation of ordinary
algebra. In fact, if we were to apply Jacosr’s transformation to one only of « or ¢, the
auxiliary arcs just mentioned would give values of » of the form 7474/ —1), and the
difficulty would depend upon the interpretation of F(n4-#x/—1)).

* See Fonctions Elliptiques, vol. 1. p. 71. sect. 58.



